
Last Modified: 24-MAY-96
+-------------------------------------------------------------------mh<DoH!>-+
| M______.  A______.  C______.     H____.    A______.  C______.  K____.      |
|  )     :\  )     :\  )     :\     )   / /\  )     :\  )     :\  )   / /\/\ |
| /       :\/   /\  :\/   /\__/_   /   /__\:\/   /\  :\/   /\__/_/   /_/   / |
|/   /  \  :\  /  \  :\   \_\  :\ /   ____  :\  /  \  :\   \_\  :\  .__.  :\ |
|\___\__/______\   \____________/ \___\  /______\   \_______________\   \___\|
+--------------------------------------S.ssSS88$$s----S-S----,ssSS88$$8s-----+
 Contributors: AX1P, Filbert,          S8   '"~$$~    S8 8S   8$$8S"~~~$8S
 Observer, Maddog Hoek, oleBuzzard,   S8             S8   8S  S8$$      ~8S
 Armchair Hacker, ArcAngel, Nganon   S8$.ssSS88$$s  S8$   $8S  S8$$      $8S
 DATE -=> 04-MARCH-1996             S8$    '"~$$~  S8$.sss.$8S  S8$       $8S
 ______kn0wledge phreak BBS______  S8$$           S8$$'"~"'$$8S  S8$      $$8S
  New home of MHFAQ 719.578.8288  S8$$           S8$$       $$8S  S8s  $   $
$8S
   WebSite: http://iti2.net/k0p  S8$$$          S8$$$  ver  $$$8S  S8s $$ s$$
$8
       e-mail: k0p@iti2.net       ~$~            ~$~   2.0   ~$~    ~S8$$
$Ss~$~
======================================================================$$$$====
                                                                      ~~#$

SECTION I: SOFTWARE DEPROTECTION/'CRACKING'
-------------------------------------------

01. What is MACSBUG?

MacsBug is an acronym for Motorola advanced computer systems 
deBugger. It is                                   an assembly-
language-level debugging tool for the Macintosh and Power
Macintosh computers. MacsBug was written by Motorola (creator of 
the 68000
series chip) to aid programmer's in development of Macintosh 
software. The
versatility of MacsBug also makes it a very useful tool for 
software
deprotection.

02. Where can I find MacsBug?

MacsBug can be found at the Apple Corporation FTP Support Site:

http://www.support.apple.com/pub/Apple%20SW%20Updates/US/Macintos
h/Utilities

03. How do you use MacsBug?

The answer comes from Observer in an Original piece written for 
the FAQ:



Macsbug for Fun and Profit
Macsbug is an awesome program published by Apple and available 
for free. It's
used by programmers to debug their programs, and crackers to help
them in
their work. Macsbug (MB) is what's called a "low-level debugger."
This is
because it works at a very low level--in other words, looking at 
the actual
instructions being executed by the computer. Currently, the 
latest version of
MB is 6.5.2.

Installing Macsbug is easy. Drop it in your System Folder and 
restart. Don't
double click on it, don't put it in the Extensions folder, don't 
try to give
it more memory--just put it in the System Folder and let it be. 
The next time
you restart, the message "Debugger installed" will accompany your
normal
Welcome to Macintosh message. This confirms that Macsbug is 
loaded.

To stop processing and enter Macsbug (called breaking into 
Macsbug), press
the interrupt button on your Mac. This is a small button with a 
circle on it.
Inside the circle is a little squiggly line that looks sort of 
like an EKG
(sometimes it's just a circle, though). It will often be 
accompanied by an
adjacent small button with a triangle in it. This is the reset 
button.

Anyway, press the interrupt button, and Macsbug will appear. If 
your computer
is one of those without hardware reset/interrupt buttons, press 
cmd-power.
(cmd-ctrl-power is the equivalent of the reset button.)

Macsbug makes you look very cool when you use it. This is because
it looks
like sheer hell to anyone who doesn't know how to interpret what 
it gives
you. What does it give you? Here's an ASCII picture of a MB 



screen: (view in
Monaco)

_________________________________________________________________
__
|    SP      |                                                   
|
|  nnnnnn    |                                                   
|
|            |                                                   
|
| CurApName  |                                                   
|
| SimpleText |                                                   
|
|            |                                                   
|
| 32-bit RM  |             [previously executed                  
|
| SR SmxNZvc |              instructions, plus                   
|
|            |              output generated by                  
|
| D0 nnnnnn  |              your commands, show up               
|
| [...]      |              here]                                
|
| D6 nnnnnn  |                                                   
|
| D7 nnnnnn  |                                                   
|
|            |
____________________________________________________|
|            | [proc name]                  ; will branch        
|
| A0 nnnnnn  |   +nnnn     nnnnnn   BCC.S          | 641A        
|
| [...]      |   +nnnn     nnnnnn * MOVE.L         | 2008        
|
| A7 nnnnnn  |   +nnnn     nnnnnn   CLR.W          | 4267        
|
|____________|_____________________________________|
______________|

Whoa! What the HELL is all this stuff? (And who in the world uses
it?)



Basically, unless you're using assembly language on the Mac (as a
programmer
or cracker, for example), you don't need to know what all this 
stuff means.
For the benefit of those who care, however, here you go. (Other 
people, skip
down to the next section.)

SP
Stack Pointer. Not too important except for programmers/crackers.

CurApName
The name of the currently running application. This is NOT (NOT 
NOT
NOT)not   the frontmost application! Many times it will not be. 
To ensure
that an application will be running when you break into macsbug, 
hold down
one of its menus.

32-bit RM
Indicates whether you are in 32 or 24 bit memory mode (on any 
modern Mac will
always be 32)fairly    and whether you're using Real Memory or 
Virtual
Memory.

D0-D7, A0-A7: Data and address registers on the 680x0 chip, where
data is
sometimes stored.

[proc name]
The name of the subprogram which is being executed, or "no 
procedure name" if
none is available. If ResEdit/Resorcerer tell you the name of a 
subprogram is
something line "<Anon_17>," MB just says "no procedure name."

; will branch
If the next instruction to be executed (the instruction directly 
below the
procedure name) is a branch, this will pop up and say whether or 
not the
branch will occur.

+nnnn
The offset within the current procedure of the instruction on 



that line.

nnnnnn
The absolute address in memory of the instruction on that line.

*
Shows up if there's a breakpoint set on an instruction. Unless 
you're setting
breakpoints, you won't get any of these.

BCC.S, MOVE.L, etc.
The next assembly instructions which will be executed.

641A, 2008, etc.
The hex equivalent of these instructions.

And that's about it. There are lots of worthwhile things you can 
do in
Macsbug without understanding all this stuff, though.

es
Exit to Shell. Attempts to quit the current program and go back 
to the
finder. If you crash and use this, it's best to restart the 
computer ASAP.

rs
ReStart. Useful if you crash and can't use es, but don't want to 
do a
hardware restart. Better than turning the computer off, because 
it unmounts
mounted volumes.

rb
ReBoot. Same as rs, but doesn't unmount mounted volumes. This 
makes it more
or less the same as turning the computer off and then back on, or
hitting a
hardware reset button.

help <topic | command>
Displays help for the specified topic or command. To see a list 
of topics,
just type "help".

Base 10 <-> Base 16 (hex) <-> ASCII conversion
Enter a number preceded by # for decimal, $ for hex, or in single



quotes
(i.e. 'q') for ASCII. Hit return. What pops up is the hex, 
decimal and ASCII
equivalent! Nifty, eh?

Error ID lookup
Crashed and want to know just what an error -43 is? Break into 
Macsbug and
type:

error #(error ID in base 10)

and Macsbug will tell you what the error means.

A calculator!
Macsbug can perform mathematical operations, such as *, +, -, /, 
even between
number systems!

You can also do some fun stuff with Macsbug:

sw menuflash [hexadecimal number 1-FFFF]
Sets the number of times a menu item flashes when selected. If 
you set this
over 50 or so, be prepared to be very patient!

Strobe light
Type "swap". Macsbug will say "Display will be swapped after each
trace or
step." Now type "s 20" and hit return. Ooooh!! Aaaah!! Make the 
number bigger
if you like, but be patient... Type swap again to end the 
process.

And in case it ever comes up in Trivial Pursuit:
The name Macsbug has nothing to do with Macs. It is an acronym 
for Motorola
Advanced Computing Systems deBUGger. If Apple had called their 
computers
Donuts, Macsbug would still be called Macsbug. (Motorola comes 
in, for those
who don't know, because Motorola makes the 680x0 chips which were
the heart
of every Mac until the PowerPC, which is still made by Motorola.)

For Andy Ihnatko's typically unique spin (I mean that kindly, 
Andy) on



Macsbug, check out the last page of the Feb 96 MacUser. If you're
a Mac
programmer and want to know how to use Macsbug to examine your 
programs,
check out _Debugging Macintosh Software with Macsbug_, by Othmer 
and Straus.
For information on how to use Macsbug itself, Apple publishes a 
manual which
costs about $30.

04. How can I use MacsBug to crack software?

"How do I get blahblahware to stop asking me to register?"
(Also known as, "Will someone give me a crack to blahblahware?")

Intro...
Cracking software is a huge topic--not always difficult, but one 
with many
different aspects, all of which can be important. This is just 
the first step
down a long road, and I urge anyone interested in truly learning 
about
cracking to check out the "Further Reading" section at the 
bottom. Also, the
first two appendixes (glossary and assembly reference) aren't 
meant as
afterthoughts but as important parts of the text. Use them. 
Appendix 3 is
useful if you want Resorcerer (which you do).

Background...
Anyone who's written a few real Mac applications (or one big one)
in Pascal,
C, or any similar language is a good candidate to become a Mac 
cracker.
However far down from there you rank yourself, is how much harder
it's going
to be for you to crack software. Try if you like, but knowing how
to program
is useful if you want to modify programs.

If you're freaked out about assembly language, don't be; a decent
programmer
in Pascal or C can acquire a fluency in assembly fairly easily. 
All your
friends from the Toolbox exist in assembly, just with an 
underscore ("_")



before their names. And we call them traps, rather than calls. 
But other than
that they're pretty much the same. And lots of cracking is just 
changing
branches, like changing conditions in an "if" statement. Nothing 
too hairy,
right?

People generally write programs in what's called a high-level 
language, a
language that's far from what the computer actually does but is 
easy for a
human to remember and work with. HyperTalk is a very high-level 
language.
Pascal and C are another notch or two down the line. In order for
the
computer to run programs written in these high-level languages, 
you need a
compiler. This is a program which translates what you've written 
in Pascal
(gibberish to the computer), into assembly language, the specific
instructions which the CPU will execute to run your program. So 
when you open
a program and look at its CODE resources, you're looking at some
representation of the actual instructions the computer follows to
run that
program.

The Hunt...
Note I said some representation. If you're using ResEdit, all 
you'll see is
the code in hexadecimal. This doesn't do you much good. To view 
it as its
assembly code equivalent, either spring for Resorcerer (a $256 
ResEdit done
right), or get the ResEdit CODE Editor, which is free and 
publicly available.
Once you install the resources in the CODE Editor into your 
ResEdit
application, when you open a CODE resource, you'll see something 
like this
(and also get some new menus):

Offset     Addr      Opcode        Operand          Comment
===========================================================

Here's what this all means:



Offset
The line number in bytes, counting from the beginning of the CODE
resource segment

Addr
The line number, counting from the beginning of the current
procedure/subprogram

Opcode
The assembly instruction to execute

Operand
Data which accompanies the instruction (parameters)

Comment
Misc. info on a line of code, plus hex representation of the line

All this exists in Resorcerer as well, just with slightly 
different names. To
toggle between viewing absolute and relative offsets in 
Resorcerer, press
cmd-2 while viewing a CODE resource.

Go to the "Modules" (Routines in Resorcerer) menu. There you'll 
find a list,
in the order they exist in the code, of all of the procedures in 
that code
segment. (Happy Resorcerer users will have this menu 
alphabetized.) Find a
program which has more than anon1, anon2, etc. Procedure names 
are a huge
help to a cracker, because let's say you want to remove a 
registration dialog
box--which catches your eye more, "DoRegDialog," or "anon36?"

So you have your program. Let's say what's annoying you is that 
it always
shows a dialog which you can't dismiss for a few seconds, until 
it enables
the OK button.

Go look at the program's DLOG resources and find the dialog you 
want to
avoid. If it isn't there, check out the WIND resources as well. 
Convert the
dialog/window's ID number into hex. If you can't do this 



manually, Resorcerer
can do it for you, or else find one of the many shareware 
calculators that
has the capability. Also, TI-85 owners can just punch go into the
mode
settings and set it to use hex. Never thought that thing would 
come in handy,
did you?

Anyway. Search for this value in the code, just a few lines 
before a call to
the _GetNewDialog trap. (Cmd-G in Resorcerer, or hold down option
when
opening the CODE resource in ResEdit and use ResEdit's search 
tools.) Here's
a sample from an actual application, whose nag dialog is DLOG ID 
#9990=$2706:

move.w    #$2706,-(sp)
clr.l     -(sp)
pea       -$0001
_GetNewDialog

What's this doing? It's MOVEing the hex number $2706 to "sp." 
This is the
Stack Pointer, a place where things are stored temporarily--
typically
parameters passed to a procedure or function, and afterwards what
it returns.
Sure enough, the next line is:
movea.l   (sp)+,a4

This is where we move the DialogPtr given to us by _GetNewDialog,
off of the
stack pointer and put its address in register A4. (We know 
GetNewDialog
returns a DialogPtr because we bought the Inside Mac CD while we 
were doing
Mac programming in a high-level language. I wasn't kidding when I
said Mac
programming experience would help.)

The Kill...
OK, so now we know where the dialog is loaded. And, because we've
used
dialogs in a higher-level language before, we know that other 
toolbox



calls--ModalDialog and CloseDialog for example--tend to accompany
a
GetNewDialog call. Further, the problem we wish to overcome is 
that it stops
for a few seconds before enabling the OK button. This implicates 
another
likely accomplice, HiliteControl, which is used to enable and 
disable dialog
items.

Let's say the programmer was a jerk and left the subprogram names
in the
code. Maybe the subprogram you found the dialog in is called 
"DoNagBox." If
it's this obvious, you could try NOP'ing the entire DoNagBox 
subprogram. Note
that while this is easy in Resorcerer, it is very difficult in 
ResEdit.

Maybe that doesn't work. Maybe that makes the program crash. OK, 
time to try
something else. While the nag box is open, break into Macsbug 
(read about
that in another section of the FAQ) and type "atb closedialog". 
This will
cause Macsbug to interrupt processing when a call to the 
_CloseDialog trap is
made. Dismiss the nag dialog, and poof, you're in Macsbug. Use 
the "t"
command to step through the code, through the subprogram which 
holds the
_GetNewDialog for the nag box. When you hit an "rts," keep 
going--the next
line will be the line after the line which calls the nag 
subprogram. Here's a
little diagram:

                 /-> doNagBox
                /      [other assembly]
[assembly]     /       move.w $2706, -(sp)
              /        _GetNewDialog
jsr doNagBox /         [more assembly]

[more assembly]<---\   _CloseDialog
                    \  [still more assembly]
                     \-rts



We reach "jsr doNagBox," which sends us off to the doNagBox 
subprogram. This
puts up a dialog and then closes it when we hit a button. When 
all this has
been done, we're returned to the line of code immediately 
following the "jsr
doNagBox" line. Just like any other language.

We could NOP the "jsr doNagBox," but that tends to be asking for 
trouble; any
parameters passed to or received from the subprogram are left 
wandering
around, which will probably cause a crash. What we should look 
for are
branches, probably beq or bne. Is there one of these above the 
jsr which
skips down just a few lines past the jsr? If so, try changing the
condition
of this branch (such as beq->bra).

Other Techniques
The idea of looking for a dialog's ID is one which frequently 
works. However,
there are other limitations you might want to overcome. Here are 
some ideas
for other program limitations:
Only works for x minutes, then quits
Look for the _TickCount trap (hex A975) in the code--this is the 
most common
method of doing this. Something else to watch for is 
_ExitToShell, (hex
A9F4), which MAY be the way the program quits itself. If the 
subprogram names
are in the code, look especially hard at anything resembling 
"eventloop,"
"mainloop," etc.

Only works for a week
Look for the _SecondsToDate (hex A9C6) trap, and a branch a while
after it.
Also, if a dialog pops up to tell you to register, look for the 
ID of this
dialog.

Only lets you play the first x levels
Several possibilities here. If a dialog appears when you reach a 
higher



level, the easiest is to search for the dialog ID in the code. If
it quits,
look for _ExitToShell. If you absolutely can't find what you're 
looking for,
search for the highest possible level number in the code. (If you
can only
play levels 1-4, search for $0004.) If this shows up in or near 
some form of
cmp, you may have struck paydirt.

Practice, Practice, Practice
With just a few months of practice, you'll be surprised at how 
many things
you can crack in less than an hour. Here are some things you can 
try looking
at, in order of difficulty: (easiest->hardest)
Relax 1.0 (any shareware site)
GraphicConverter 1.7.7 /1 (ditto)
Warcraft 1.0
Net Watchman demo (ftp.aggroup.com) (don't worry about printing)
GopherGolf 2.0.7 (shareware again)
DragStrip 1.2.4

(Note: Some of these are commercial software. These cracks should
only be
attempted on software you own, and for your own convenience.)

Appendix 1: Glossary
Branch:
Each command in assembly has an offset, essentially a line 
number. Branching
to an offset sets the PC to the specified offset and then 
continues execution
normally.

Byte, word, long word:
The most common data sizes. Use monaco for the table below:
        Bits   Hex digits    Range (decimal)
Byte  |   8        2         0-255
Word  |  16        4        0-65535
LWord |  32        8      0-4294967295

These can be halved to alter the range to include negative 
values. So a byte
can also be used to go from #-127 to #127, a word from #-32767 to
#32767, and
so on. In a long word (for example) this is accomplished by going



from $0 to
$7FFF (#0-#32767) normally. $8000 is then equal to #-32767, up to
$FFFF=#-1.
The same system is used for the other data sizes as well.

Flags:
There are five status flags: Z, C, N, V, X. These keep track of 
the results
of operations. Conditional branches such as bne and beq check the
flags to
decide whether or not to branch.
Z: Zero flag. Set if the result of an operation is zero, or if 
two compared
values are equal. Cleared otherwise.
C: Carry flag. Set if the a math operation produced a digit carry
(i.e.
$FF+$1)
N: Negative flag. Set if the result of a math operation is 
negative, or the
most significant (rightmost) bit in a number is true.
V: Overflow flag. Set if an operation's result can't be held in 
the data
provided (such as $FF+$1 in a byte). Not too common.
X: Extended flag. Used for precision in math operations. Also not
too common.

Hexadecimal:
Usually referred to as hex. This is base 16. Our number system is
base 10
(aka decimal), which means each column is ten times the previous 
one. In hex,
you start with the ones column, then you have a sixteens column, 
then a 256's
column, and so on. Hex is just like our normal system, except you
count to 15
before going to the next place. The extra 6 numbers you need for 
this are
provided by the letters A-F. So counting in hex goes like this:
1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19,1A,1B
,1C,1D,1E,1F,
20,21...
 The signs # and $ are used to indicate decimal (base 10) and 
hexadecimal,
respectively. So #10=$A; (#15+#1)=($F+$1)=$10; #255=$FF; and so 
on.
Two hexadecimal digits are equivalent to eight bits, or one byte.



Registers:
680x0 chips have 16 registers, which are places to hold data 
(essentially a
variable in higher-level languages). These are divided into 8 
data registers,
labeled D0-D7, and 8 address registers, labeled A0-A7. Each 
register can hold
a long word. The address and data registers are themselves 
identical, but
there are commands which can be used on address registers which 
cannot be
used on data registers.

Subprogram/Subroutine/Procedure/Function:
Used more or less interchangeably. If used specifically, they 
mean the same
thing they would in a high-level language.

Appendix 2: Quick Assembly Instruction Reference
This is a brief description of the most common commands in 
assembly language.
There are many others however, and anyone seriously wanting to 
learn how to
crack will soon need more than this. See the "further reading" 
section for
suggestions.
Suffixes: .b, .w, .l
Indicates that the suffixed instruction will apply to a Byte, 
Word, or Long
word, respectively. So cmp.b will compare two bytes.

add
ADDs two values, and stores the result in the second operand. The
Z flag is
set if the result was zero, cleared otherwise.

beq
Branch if EQual. Branches if Z flag is set. 67 hex.

bne
Branch if Not Equal. Branch if the Z flag is clear. 66 hex.

bra
BRanch Always. Move PC to the indicated offset and continue. 60 
hex.

clr



CLeaR. Sets its operand to zero.

cmp
CoMPares two values. If the values are equal then the Z flag is 
set.
Otherwise it is cleared.

jsr/rts
Jump SubRoutine. Exactly like calling a procedure or function in 
a high-level
language: sets PC to the subprogram's address, but first puts the
PC's
current value on the stack. When the specified subprogram is 
completed, the
rts ("ReTurn from Subroutine") command will be used to return to 
where the
subprogram was called.

link/unlk
LINK/UNLinK. Generally used to create local variables for 
subprograms. (Link
creates, unlink disposes at end of subprogram.)

move
MOVEs the first operand into the second. When you see something 
like (A2), it
means that the data stored in the address held in A2 is being 
used. A2
without the parentheses means the actual data held in A2.

nop
No OPeration. Useful for simply deleting code without changing 
the location
in memory of other code. 4E71 hex.

sub
SUBtract. Same as add, but subtracts the first operand from the 
second.

Appendix 3: Ordering Resorcerer, a cracker's best friend
The single-copy price of Resorcerer is US $256 (decimal!).  We 
also offer
quantity, reseller, and educational discounts at anywhere between
20% and 50%
off of the above price.  Please call us for more information and 
a quote.



Our mailing address is:
Mathemaesthetics, Inc.
P.O. Box 298
Boulder, CO, 80306-0298
Phone: (303) 440-0707
Fax:     (303) 440-0504

Internet: resorcerer@aol.com

Appendix 4: FURTHER READING

Surprise surprise, a few pages aren't enough to teach you 
assembly language.
For more information, check out these sources...
Files by The Shepherd and Vassal
Each of these guys has written a much bigger file on Mac 
cracking. The
Shepherd's is the larger one and better for the beginner (and a 
great file in
general), Vassal's offers more specific technique tips. I used 
the Shepherd's
file as a reference for the assembly reference section here.

Basic MacCracking files
I've written a few files which describe how to crack specific 
programs. Of
course I'm biased, but I think these are all very helpful to 
beginners,
especially since they were written as I learned things myself.

Fantasm's help files
Fantasm is an assembly language development program, for the 
sickos who
actually create whole programs in assembly language. While using 
the program
itself has been shown to cause severe social problems, it comes 
with six
large files written to teach someone how to write assembly 
language. These
aren't something anyone serious about this stuff should pass up.

Debugging Macintosh Software with Macsbug
Macsbug in invaluable to a cracker. I would be shot if I took the
space to
describe how to use it here, but it's not that hard to figure 
out. What is
hard is discovering how to use it in the context of a Macintosh 



(i.e. where
is the event record that _waitnextevent just got?), and this book
tells you
all of that.

Macsbug Reference and Debugging Guide
Apple's Macsbug documentation, plus EXCELLENT assembly tutorial. 
Another one
serious folks shouldn't miss out on.

05. What are some other useful MacsBug related resources?

DBugr 1.2.1...........Puts a floating bomb on your desktop that 
you can click

                      on at any time to enter macs bug. Widely 
available.
                      http://vsl.cnet.com Search: 'macsbug'

Break Before..........Break into MacsBug on the very first 
instruction of the

                      INIT code of ANY extension you choose. 
Widely
available.
                      http://vsl.cnet.com Search 'macsbug'

Debugger F-Key........Drop into the debugger. Recognizes MacsBug,
TMON, The
                      Debugger, and ABZmon. Will also recognize 
any new
                      debuggers that follow Apple's debugger 
protocol as
                      documented in the "MacsBug Reference and 
Debugging
                      Guide." http://vsl.cnet.com Search 
'macsbug'

Cool MacsBug Tricks...Cool things you can do with MacsBug.
                      
http://www.biddeford.com/~benyc/Macsbug.html

Tips for MacsBug......Place to obtain and submit MacsBug 
programming tips.
                      
http://www.scruznet.com/~crawford/Computers/macsbug.html


